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Analytic expressions for phase shifts in partially screened 
Coulomb potentials with ionic long range Coulomb tails 
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Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 
15260, USA 

Received 26 March 1986 

Abstract. Analytic expressions for the high energy phase shifts of an electron moving in 
a partially screened spherically symmetric potential corresponding to an atomic ion have 
been obtained using methods developed previously for phase shifts in neutral atom poten- 
tials. Comparison with numerical calculation shows that the ionic phase shift formula is 
accurate in the case of a self-consistent potential of the Hermann-Skillman type, provided 
the electron energy is large and the angular momentum is small. The effect of the ionic 
tail on the phase shift (as compared with the short-range case) becomes substantial at 
lower energies, higher ionicities or larger angular momenta. It  is concluded that use of 
neutral atom high energy analytic phase shift expressions is justified even in the presence 
of ionic tails. 

1. Introduction 

In previous work (Bechler and Pratt 1983,1985) we have obtained analytic expressions 
for the high energy phase shifts in a screened Coulomb short-range potential of the type 

V ( r )  = - a g ( A r ) / r  (1) 

where a = Za with 2 being the atomic number and a the fine structure constant. Here 
A is a small parameter characterising the screening in the sense that A - '  characterises 
the dimensions of an atom. For short-range potentials the function g ( A r )  falls off to 
zero for r + 03. Assuming further that A is small, i.e. A - I  large compared to the electron 
Compton wavelength, we represented the potential in the interior of an atom by the 
first few terms of the expansion (McEnnan et a1 1976a, b) 

g ( A r )  =I Vn(Ar)" 
n 

We were then able to obtain expressions for high energy phase shifts in such a potential 
in terms of an expansion in A and in inverse electron momentum, which also included 
certain quadrature integrals over the potential characterising its global properties. 

Our purpose here is to examine how these expressions for the phase shifts are 
modified if the assumption of a short-range potential is relaxed. We begin by briefly 
reviewing and summarising our procedure in the short-range case in order to make 
the nature of the subsequent modification intelligible. 
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2. Summary of the short-range case 

It has been shown that small distance properties of bound and continuum wavefunctions 
of given angular momentum 1 are well described by small distance properties of the 
potential (i.e. by V, )  in the case where the energy of the state (positive or negative) 
is large in magnitude and the angular momentum is not large (McEnnan et al 1976a, b). 
For bound states, large energy corresponds to the binding energies of inner shell 
electrons of medium and higher 2 atoms, whereas in the case of continuum electrons 
the energy should be such that v = a / p < l .  In addition to wavefunction shapes, 
bound-state energies and bound and continuum normalisations could also be deter- 
mined as analytic expressions in each order in an expansion in A with the use of the 
expansion (2).  

However, small distance properties of the potential are not sufficient to determine 
(even at small distances) the full three-dimensional scattering wavefunction i,bp charac- 
terised by a given value of the asymptotic linear momentum p (Bechler et al 1979). 
To identify, even for small distances, the particular solutions of the Schrodinger 
equation in three dimensions which satisfies the scattering boundary conditions requires 
the use of some large distance information about the potential. We have recently 
found (Bechler and Pratt 1983, 1985) that it is possible to link the needed information 
about the small and large distance regions through use of the iterated eikonal expansion 
of the full continuum wavefunction t+bp. Writing the wavefunction in the form 

cLp(r) = e d i p  - rMP( r )  

(-ipa/az + V( r ) )4p ( r )  = iV24p(r). 

(3) 

one gets the following equation for dP(r) :  

(4) 

The leading term in the iterated eikonal expansion is given by the eikonal approximation 
of Glauber (1959) and corresponds to the solution of (4) with zero right-hand side 
and with the boundary condition 

(Momentum p has been assumed parallel to the z axis.) The eikonal approximation 
for 4,, has the form 

4: '* ( r )=exp(- i jz  P --oc V ( p  +p*z') dr') 

where p is the radius vector in the plane orthogonal to p .  The next terms in the iterated 
eikonal expansion can be obtained by iteration of an integral equation for 4p(r) ,  
equivalent to the partial differential equation (4) together with the boundary condition 
(5): 

We have shown (Bechler and Pratt 1983, 1985) that the iterated eikonal, a valid 
expansion of the full scattering wavefunction I+$, for complex momenta, may also be 
used to determination +,, at short distances and for real momenta. From the small 
distance expansion of this iterated eikonal of large complex momentum, the scattering 
wavefunction at small distances and real p is determined by continuation in p .  The 
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screened Coulomb phase shifts, which are the coefficients (phases) of the radial solution 
of definite angular momentum in the partial wave expansion of $p ,  can then be identified 
by comparing partial wave projections of $p with the radial wavefunctions found 
previously (McEnnan er a1 1976a, b). 

The phase shifts are given by the formula (Bechler and Pratt 1983, 1985) 

Here S,, is the point-Coulomb phase shift, 

6,, = arg r(l+ 1 - i v )  

+ is the logarithmic derivative of Euler's r function and v = a/p. 

3. Phase shifts for a potential with a Coulombic tail 

We now want to use a similar procedure to find the phase shifts for a partially screened 
potential which is Coulombic (i.e. corresponds to nuclear and ionic charges respec- 
tively) both at small and large distances. We can characterise this potential as 

V(r) = -ah(Ar)/r (11) 

where h(0)  = 1 and h(Ar) + r - r c a  Z , / Z ,  where Z, is the ionic charge. For small A the 
function h(Ar) can be expanded according to equation (2) in the same way as in the 
short-range case. 

Due to the long-range character of the ionic potential the eikonal expansion (6) is 
incorrect (and in fact would lead to a divergent eikonal phase), since it no longer 
corresponds to the correct boundary condition on the scattering wavefunction. The 
eikonal expression will be modified in such a way that it accounts correctly for the 
Coulomb phase at infinity. The boundary condition (5) has to be replaced by 

(12) 

where v, = Z,a/p .  This boundary condition corresponds to the usual asymptotic 
Coulomb phase function of the scattering wavefunction in a Coulomb potential: 

(13) 

4p( r )  - exp[ -i v, In p(  r - z ) ]  
I - - m  

t,hp(r)- ,--x exp[ip- r-iv, Inp(r-z)]+spherical wave. 

Note that we have assumed that the Coulomb phase function at infinity is the same 
for a potential with a Coulombic tail as for a corresponding point-Coulomb potential, 
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i.e. small distance properties of the potential do not influence the asymptotic Coulomb 
phase function. While commonly used (Starace 1982) this assumption may not 
necessarily be obvious. In the pure Coulomb case the asymptotic behaviour (12) is 
associated with the unique solution of the differential equation: 

+pCoulomb(r) = N exp(ip. r)M(iv, ,  1; ip(r-z))  (14) 

where M is the regular confluent hypergeometric function which satisfies the require- 
ments of regularity at the origin and boundary condition at infinity corresponding to 
(modified) plane wave and outgoing (modified) spherical wave (Messiah 1961). On 
the other hand, for a potential with a Coulombic tail (and non-Coulombic at finite 
distances) the wavefunction is a solution of the point-Coulomb equation only at large 
r and therefore, looking at the asymptotic form of the wavefunction, we do not need 
to impose the regularity condition. For this reason the variety of physically acceptable 
solutions in the asymptotic region is now much wider than in the point-Coulomb case 
and it is not therefore a priori obvious that the distorting phase is in both cases the same. 

To show that, at least for the plane wave part of the asymptotic wavefunction, the 
standard distorting phase function of the point-Coulomb case is required, note first 
that the only asymptotic solutions which are physically acceptable can depend only 
on p ( r - z )  and not on the second parabolic variable p ( r+z ) .  This means that the 
asymptotic form of the wavefunction, which is physically acceptable, looks like 

(15) 

where + ( a ,  b ;  x)  is the irregular solution of the confluent hypergeometric equation. 
Another solution, asymptotically equal to a (distorted) plane wave plus a (distorted) 
spherical wave, would be 

(16) 

This choice would however lead to a plane wave asymptotic behaviour with a distorting 
phase function singular along the negative z semi-axis. This asymptotic behaviour is 
not physically acceptable since it corresponds to a singular incident wave, whereas 
one wishes the incident wave (corresponding to plane wave along the negative z 
semi-axis is the stationary picture of scattering) to be regular. One should therefore 
choose (15) rather than (16) and then, independent of the relative magnitude of the 

+asymplotlc- a+(iv,, 1: ip(r-z)+PM(iv, ,  1: ip ( r -z ) )  

+arymptotlc- a+(iv,, 1, - i ~ ( r + z ) ) + P M ( i v , ,  1: i d r - z ) ) .  

coefficients a and p, the wavefunction is asymptotically equal to (Bateman and Erdelyi 
1953) 

+p - ,-5 exp[ipz - i v, In p(  r - z)]  +distorted spherical wave (17) 

which shows that (12) is the correct boundary condition for $ I p ( r ) .  We can intuitively 
understand this result as saying that an incoming flux at asymptotic distances is sensitive 
only to the asymptotic long-range potential but has no way to know whether that 
potential changes at small distances. 

We can now use the general procedure described previously (Bechler and Pratt 1985) 
to find the phase shifts in an ionic screened potential corresponding to an atomic ion 
with charge Z,. The difference from that paper is due to the different form of the 
eikonal wavefunction. The solution of the eikonal equation, for a long-range potential 
behaving as - Z i a / r  for large distances, and satisfying the boundary condition (12), is 
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where U = V + Z , a / r  and zo= ( p 2 p 2 -  1)/2p. Note that the first integral in this 
expression is convergent, since the long distance tail has been subtracted from V ( r ) .  

In  a similar way as for the short-range screened Coulomb potential we find the 
full continuum wavefunction (clp at small distances and, projecting (clp on partial waves, 
we can then determine the phase shifts. The expression for the phase shifts 6, has the 
same form as (8), except that there is an additional I-independent term connected with 
the long-range character of the ionic potential. The formula for the ionic phase shift 
is 

S l ( p ) =  S, l (p)+v[ ln(2p/A)+~o]-  v, In(2plA)- v ’ v ,  In(2plA) 

- i v3pO+ v31( 1 + l){f v2[ln(2p/h) + 11 + 6,) +av3 v2 
+ Re (cl(! + 1 - iv)  v3[ v, -fV21( / + l)] (19) 

where KO, Po and 6are  given by (9) with g ( y )  replaced by h ( y ) ,  and the point-Coulomb 
phase SCr in (19) has to be calculated for the nuclear charge 2, i.e. it is given by (10). 

We can see that expressions (19) and (8) are of the same form except for the 
additional I-independent term v, In(2plA) in the ionic case, which contributes to the 
divergent part of the phase when A + 0. Note that the divergent part of the phase when 
A + O  is now equal to 

whereas in the short-range case it was vln(2plA).  To understand the form of the 
divergent contribution for the ionic potential we have to look at formula (18), in which 
the long-range potential V was split into the short-range part 

r 

and the long-range Coulomb contribution Zia / r ,  independent of A. In the limit A + 0 
the short-range potential U goes to the Coulomb potential of a charge 2 - Zi and this 
is the charge which determines the behaviour of the phase when A + 0. The divergent 
part of the phase shift is determined by the short-range part of the potential (strictly 
speaking by its A = O  limit); the long-range contribution Z i a / r  in (22) does not 
contribute to the divergent phase since it is independent of A. 

Since our phase shift formulae for the short- and long-range potentials differ only 
by an /-independent term, expressions for the relative phases (e.g. &,-So) look the 
same in both cases. In principle, this does not mean that at the same energies and 
angular momenta relative phases in both cases have the same values, since short and 
long distance potentials will be in general characterised by different values of b; , even 
if their short-range characteristics (i.e. VI - r )  are the same. We may expect, however, 
that at low angular momenta and high energies, the differences between relative phases 
for short- and long-range potentials with the same short-range parameters should not 
be large, i.e. that the effect of a Coulombic tail on the relative phases is negligible. 
Only at low energies or large angular momenta (or both) can the long-range tail of a 
potential play a role. 

An example of a commonly used long-range potential having the same short distance 
characteristics as a certain short-range potential is provided by a screened potential 
with the Latter tail switched on at some distance ro (Latter 1955). This potential has 
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the form (11)  with 

r < ro 
r >  ro 

h(Ar) = { g(Ar)  
zi/z 

where g(Ar) is the screening factor of the short-range potential (1) and ro has to be 
chosen in such a way that 

g(Ar0) = zi/z (23) 

i.e. that our long-range potential is continuous. We may write h(y) as 

h(y)=  e(yo-y)g(y)+ B(y-yo)z,/z (24) 

where 0 is the step function and yo= Aro. The difference between the phase shifts in 
the short-range (s) and ionic (i)  cases can now be easily found: 

A Zi 
a Z  6 ( P )  - 6j(p) = vi In 2p/A +- v3 - g’(yo) In yo 

+ lyr dy In y [ - vg 

Integrating by parts we obtain 

Whereas the differences between 8; and 8; can be, in general, large due to the terms 
independent of 1 in (26), the relative phases will not be very different from each other. 
Denoting SI - S o =  A I  we obtain from (26) 

At higher energies, i.e. when v is smaller than one, this quantity will be small, since 
it is proportional to which in our perturbative scheme has to be small, and 
also since the integration in (31) is over a region in which the screening factor g(y)  
and its derivatives are small. Only at sufficiently low energies, and/or high angular 
momenta, may one expect larger differences between the short- and long-range cases. 
However, as we shall see in the next section, these are energies for which our perturbative 
approach to the phase shifts cannot be applied. We conclude that in most situations 
where APT results may be used, the use of neutral atom prediction is justified even if 
ionic tails are present. 
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4. Discussion of the results 

In this section we discuss various features of our expression for the ionic phase shifts. 
To get an idea how much the ionic tail matters we calculated the ratio of A7-A;  
(formula (27)) to A;, for the Yukawa potential with and without a Latter tail. The 
results are summarised in table 1. We see that, except for large ionicities and low 
energies, the effect of the long-range tail on the relative phases is minor. For Z = 13, 
for instance, the difference between short- and long-range relative phases reaches 10% 
for ionicity equal to 8 at electron energy E = 1 keV. In general, the effect of the 
Coulombic tail on relative phases can be seen at low energies-basically, these are 
energies at which our perturbative scheme is not applicable ( v  d 1)-or at high ionicities. 
For large angular momenta one can expect deviations from the short-range case also 
at higher energies. In general, the ionic tail effects are unimportant in situations for 
which APT predictions can be justified, and hence (except perhaps in situations of high 
ionicity) it is sufficient to use neutral atom AFT predictions. 

Table 1. Relative differences of the phase shifts in short- and long-range potentials. The 
fable shows the ratios ( A i - A i ) / A i ,  where A i  and A; are relative phases S,-S,, for short- 
and long-range cases, respectively. The short-range potential is the Yukawa potential and 
for the long-range case we took the Yukawa potential with a Latter tail. 

Ionicity 
~ 

2 E(keV) I 1 3 8 20 

13 l ( v = 1 . 5 8 )  1 -0.0016 -0.0070 -0.0385 
2 -0.0028 -0.0127 -0.0696 
3 -0.0043 -0.0198 -0.1087 

3 ( Y = 0.88) 1 -0.0004 -0.0020 -0.0106 
2 -0.0008 -0.0037 -0.0204 
6 -0.0035 -0.0160 -0.0882 

10 ( v  = 0.48) 1 -0.0002 -0.0004 -0.0028 
4 -0.0005 -0.0025 -0.0139 
8 -0.0016 -0.0072 -0.0395 

36 10(v=1.33) I -0.0003 -0.0013 -0.0059 
4 -0.0002 -0.0014 -0.0054 -0.0248 
8 -0.0005 -0.0037 -0.0146 -0.0679 

100 ( U  = 0.42) I -0.0005 
4 -0.0001 -0.0005 -0.0021 
8 -0.0001 -0.0004 -0.0013 -0.0060 

Ionicity 

1 3 6 60 

79 3 (v=5.32) 1 
4 
8 
1 
4 
8 
1 
4 
8 

30 ( Y = 1.68) 

100 ( Y = 0.92) 

-0.0005 
-0.001 1 
-0.0017 
< 1 0 - ~  

-0.0002 
< 
< 1 0 - ~  

-0.0017 
-0.0043 
-0.0068 

-0.0003 
-0.0008 
< 1 0 - ~  

-0.0002 

-0.0061 
-0.0152 
-0.0244 
-0.0003 
-0.001 1 
-0.0029 
< 
-0.0003 
-0.0008 

-0.1773 
-0.4432 
-0.7126 
-0.0080 
-0.03 13 
-0.0833 
-0.0019 
-0.0082 
-0.0225 
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In  table 2 we give the comparison of our analytic relative phases SI - Sowith the 
results of a numerical calculation for the self-consistent Hermann-Skillman potential 
with Zi = 1. We used an analytic model of the screened ionic potential (McEnnan er 
a1 1976a), 

V ( r ) =  - ( a / r ) [ Z - ’ + l  exp( -p I r )+ ( l  -5-z-I) exp(-p2r). 

h(y) = Z-’ + 5 exp( -vly) + ( I  - 5 - 2 - l )  exp(-v2y) 

(28) 

for which 

(29) 

where vi = pi/A. We used the Thomas-Fermi expression for A, i.e. A = 1.13~xZ”~ and 
we took the values of p l ,  p2 and from McEnnan et a1 (1976a). Comparison with 
numerical results is shown for Z = 13,36 and 79 at various values of energy and angular 
momentum. As expected, APT gives better results at higher energies and lower angular 

Table 2. Analytic and numerical relative phases for the self-consistent Hermann-Skillman 
potential with a Latter tail. 

4 - 80 

Z E (keV) I Analytic Numerical O h  error 

13 3 (v=0.88) 

10 ( v = 0.48) 

30 ( v  = 0.28) 

36 10 ( v  = 1.33) 

30 ( v = 0.77) 

100 ( Y = 0.42) 

79 30 ( v  = 1.68) 

100 ( Y = 0.92) 

1 
2 
3 
4 
1 
2 
4 
6 
1 
2 
4 
6 

10 
1 
2 
4 
1 
2 
4 
6 
1 
2 
4 
6 

10 
1 
2 
4 
1 
2 
4 
6 
8 

-0.725 
-1.284 
-1.249 
-1.315 
-0.451 
-0.674 
-0.897 
-0.989 
-0.271 
-0.406 
-0.554 
-0.636 
-0.714 
-0.935 
- 1.463 
-1.891 
-0.666 
-1.021 
- 1.388 
- 1.548 
-0.401 
-0.606 
-0.835 
-0.964 
- 1.096 
- 1.047 
-1.711 
-2.376 
-0.759 
-1.188 
- 1.664 
-1.910 
-2.036 

-0.771 
-1.186 
-1.441 
-1.613 
-0.459 
-0.694 
-0.952 
-1.098 
-0.273 
-0.410 
-0.566 
-0.659 
-0.771 
-0.999 
-1.612 
-2.303 
-0.679 
-1.050 
-1.468 
-1.711 
-0.403 
-0.61 1 
-0.848 
-0.992 
-1.167 
-1.110 
- 1.854 
-2.756 
-0.769 
-1.211 
-1.725 
-2.032 
-2.243 

6 
8 

10 
18 
1.7 
2.8 
5.8 
9.9 
0.7 
0.9 
2.1 
3.4 
7.4 
6.4 
9.2 

17.0 
1.9 
2.7 
5.4 
9.5 
0.5 
0.8 
1.5 
2.8 
6.0 
5.4 
7.7 

13.7 
1.3 
1.8 
3.5 
6.0 
9.2 
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momenta, i.e. in the region where screening effects are expected to be smaller. With 
increasing atomic number the lowest energies at which APT results for the phase shifts 
can be applied also increase since, to be able to use APT in the continuum case, one 
must in general have v = a / p  < 1. 
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